Logo Search packages:      
Sourcecode: octave-optim version File versions  Download package

nmsmax.m

function [x, fmax, nf] = nmsmax(fun, x, stopit, savit, varargin)
%NMSMAX  Nelder-Mead simplex method for direct search optimization.
%        [x, fmax, nf] = NMSMAX(FUN, x0, STOPIT, SAVIT) attempts to
%        maximize the function FUN, using the starting vector x0.
%        The Nelder-Mead direct search method is used.
%        Output arguments:
%               x    = vector yielding largest function value found,
%               fmax = function value at x,
%               nf   = number of function evaluations.
%        The iteration is terminated when either
%               - the relative size of the simplex is <= STOPIT(1)
%                 (default 1e-3),
%               - STOPIT(2) function evaluations have been performed
%                 (default inf, i.e., no limit), or
%               - a function value equals or exceeds STOPIT(3)
%                 (default inf, i.e., no test on function values).
%        The form of the initial simplex is determined by STOPIT(4):
%           STOPIT(4) = 0: regular simplex (sides of equal length, the default)
%           STOPIT(4) = 1: right-angled simplex.
%        Progress of the iteration is not shown if STOPIT(5) = 0 (default 1).
%           STOPIT(6) indicates the direction (ie. minimization or 
%                   maximization.) Default is 1, maximization.
%                   set STOPIT(6)=-1 for minimization
%        If a non-empty fourth parameter string SAVIT is present, then
%        `SAVE SAVIT x fmax nf' is executed after each inner iteration.
%        NB: x0 can be a matrix.  In the output argument, in SAVIT saves,
%            and in function calls, x has the same shape as x0.
%        NMSMAX(fun, x0, STOPIT, SAVIT, P1, P2,...) allows additional
%        arguments to be passed to fun, via feval(fun,x,P1,P2,...).

% From Matrix Toolbox 
% Copyright (C) 2002 N.J.Higham
% www.maths.man.ac.uk/~higham/mctoolbox
% distributed under the terms of the GNU General Public License
%
% Modifications for octave by A.Adler 2003
% $Id: nmsmax.m 8056 2011-01-16 17:42:02Z i7tiol $

% References:
% N. J. Higham, Optimization by direct search in matrix computations,
%    SIAM J. Matrix Anal. Appl, 14(2): 317-333, 1993.
% C. T. Kelley, Iterative Methods for Optimization, Society for Industrial
%    and Applied Mathematics, Philadelphia, PA, 1999.

x0 = x(:);  % Work with column vector internally.
n = length(x0);

% Set up convergence parameters etc.
if (nargin < 3 || isempty(stopit))
  stopit(1) = 1e-3;
end
tol = stopit(1);  % Tolerance for cgce test based on relative size of simplex.
if length(stopit) == 1, stopit(2) = inf; end  % Max no. of f-evaluations.
if length(stopit) == 2, stopit(3) = inf; end  % Default target for f-values.
if length(stopit) == 3, stopit(4) = 0; end    % Default initial simplex.
if length(stopit) == 4, stopit(5) = 1; end    % Default: show progress.
trace  = stopit(5);
if length(stopit) == 5, stopit(6) = 1; end    % Default: maximize
dirn= stopit(6);
if nargin < 4, savit = []; end                   % File name for snapshots.

V = [zeros(n,1) eye(n)];
f = zeros(n+1,1);
V(:,1) = x0;
f(1) = dirn*feval(fun,x,varargin{:});
fmax_old = f(1);

if trace, fprintf('f(x0) = %9.4e\n', f(1)), end

k = 0; m = 0;

% Set up initial simplex.
scale = max(norm(x0,inf),1);
if stopit(4) == 0
   % Regular simplex - all edges have same length.
   % Generated from construction given in reference [18, pp. 80-81] of [1].
   alpha = scale / (n*sqrt(2)) * [ sqrt(n+1)-1+n  sqrt(n+1)-1 ];
   V(:,2:n+1) = (x0 + alpha(2)*ones(n,1)) * ones(1,n);
   for j=2:n+1
       V(j-1,j) = x0(j-1) + alpha(1);
       x(:) = V(:,j);
       f(j) = dirn*feval(fun,x,varargin{:});
   end
else
   % Right-angled simplex based on co-ordinate axes.
   alpha = scale*ones(n+1,1);
   for j=2:n+1
       V(:,j) = x0 + alpha(j)*V(:,j);
       x(:) = V(:,j);
       f(j) = dirn*feval(fun,x,varargin{:});
   end
end
nf = n+1;
how = 'initial  ';

[temp,j] = sort(f);
j = j(n+1:-1:1);
f = f(j); V = V(:,j);

alpha = 1;  beta = 1/2;  gamma = 2;

while 1    %%%%%% Outer (and only) loop.
k = k+1;

    fmax = f(1);
    if fmax > fmax_old
       if ~isempty(savit)
          x(:) = V(:,1); eval(['save ' savit ' x fmax nf'])
       end
    end
    if trace
       fprintf('Iter. %2.0f,', k)
       fprintf(['  how = ' how '  ']);
       fprintf('nf = %3.0f,  f = %9.4e  (%2.1f%%)\n', nf, fmax, ...
               100*(fmax-fmax_old)/(abs(fmax_old)+eps))
    end
    fmax_old = fmax;

    %%% Three stopping tests from MDSMAX.M

    % Stopping Test 1 - f reached target value?
    if fmax >= stopit(3)
       msg = ['Exceeded target...quitting\n'];
       break  % Quit.
    end

    % Stopping Test 2 - too many f-evals?
    if nf >= stopit(2)
       msg = ['Max no. of function evaluations exceeded...quitting\n'];
       break  % Quit.
    end

    % Stopping Test 3 - converged?   This is test (4.3) in [1].
    v1 = V(:,1);
    size_simplex = norm(V(:,2:n+1)-v1(:,ones(1,n)),1) / max(1, norm(v1,1));
    if size_simplex <= tol
       msg = sprintf('Simplex size %9.4e <= %9.4e...quitting\n', ...
                      size_simplex, tol);
       break  % Quit.
    end

    %  One step of the Nelder-Mead simplex algorithm
    %  NJH: Altered function calls and changed CNT to NF.
    %       Changed each `fr < f(1)' type test to `>' for maximization
    %       and re-ordered function values after sort.

    vbar = (sum(V(:,1:n)')/n)';  % Mean value
    vr = (1 + alpha)*vbar - alpha*V(:,n+1);
    x(:) = vr;
    fr = dirn*feval(fun,x,varargin{:});
    nf = nf + 1;
    vk = vr;  fk = fr; how = 'reflect, ';
    if fr > f(n)
        if fr > f(1)
           ve = gamma*vr + (1-gamma)*vbar;
           x(:) = ve;
           fe = dirn*feval(fun,x,varargin{:});
           nf = nf + 1;
           if fe > f(1)
              vk = ve; fk = fe;
              how = 'expand,  ';
           end
        end
    else
        vt = V(:,n+1); ft = f(n+1);
        if fr > ft
           vt = vr;  ft = fr;
        end
        vc = beta*vt + (1-beta)*vbar;
        x(:) = vc;
        fc = dirn*feval(fun,x,varargin{:});
        nf = nf + 1;
        if fc > f(n)
           vk = vc; fk = fc;
           how = 'contract,';
        else
           for j = 2:n
               V(:,j) = (V(:,1) + V(:,j))/2;
               x(:) = V(:,j);
               f(j) = dirn*feval(fun,x,varargin{:});
           end
           nf = nf + n-1;
           vk = (V(:,1) + V(:,n+1))/2;
           x(:) = vk;
           fk = dirn*feval(fun,x,varargin{:});
           nf = nf + 1;
           how = 'shrink,  ';
        end
    end
    V(:,n+1) = vk;
    f(n+1) = fk;
    [temp,j] = sort(f);
    j = j(n+1:-1:1);
    f = f(j); V = V(:,j);

end   %%%%%% End of outer (and only) loop.

% Finished.
if trace, fprintf(msg), end
x(:) = V(:,1);

Generated by  Doxygen 1.6.0   Back to index